LOCAL PULSATIONS AND PHASE INTERACTION
IN SUSPENSIONS OF FINE PARTICLES

Yu. A. Buevich UDC 532.529.5

This paper gives expressions for the mean values of the quantities characterizing random psuedo-
turbulent pulsations in a2 monodisperse suspension of solid spherical particles at small Reynolds numbers.
It discusses the effect of these pulsations on the effective hydraulic resistance exerted by the particles on
the carrying stream of liquid. The parameters characterizing the random chaotic motion (psuedo-turbu=
lence) of the phases in locally homogeneous flows of a suspension of fine particles have been calculated
earlier in [1, 2]. However, the relationships obtained in these articles are in need of a certain degree of
refinement; this is bound up with the refinement [3] of certain results of the speciral theory of the concen-
tration of disperse systems which were used in [1, 2], and with a more correct determination of the func-
tion characterizing the effect of the constriction of the flow around the particles on the force of the viscous
interaction of each of the particles with the liquid. Such a refinement is proposed in the present article.
The formulas presented below can be used in evaluation of the coefficients of psuedo-turbulent transfer,
of the fluctuations of the velocities of the liquid and the particles, and of other quantities characterizing
the local structure of a suspension.

1. We shall formulate the principal postulations used in what follows. First of all, we assume that
the Reynolds number, which describes constricted flow around individual particles, is small. In this case,
the flow of the suspension is locally homogeneous in the sense that, in the flow, there is no formation of
large-scale fluctuations of the concentration, and the particles themselves may be regarded as statistically
independent, neglecting their indirect collisions [1, 2]. In addition, we assume that the scales of the change
in the mean values of the quantities characterizing the mean motion of the suspension exceed by far the
corresponding scales of the pseudo-turbulent pulsations. This permits regarding the pseudo~turbulence
as Mequilibrium,” i.e., neglecting the effect of the derivatives of the above quantities with respect to the
coordinates and the time on the pulsations. In the limit, when these derivatives are equal to zero, the mo-
tion may be interpreted simply as the filtration of a liquid through a cloud of particles which, on the aver~
age, are motionless at a certain constant rate, uy, and this can be regarded as the simplest model of a
fluidized bed. In this case, the equations for the mean motion have the form

(1 — ) (— Vp + dog) — daBpK (o)u = O, LD
u=(1—p)u
—Vp + dig + dPpK(p)u =0, P = 9v,/2a% v, = p,/d,

Here dy, iy are the density and the viscosity of the liquid; @, d; are the radius and the density of ma-
terial of the particles; g is the acceleration due to gravity; p is the volumetric concentration of particles
in the system, while the function K(p) describes the deviation of the effective viscous force acting on a
particle, under constricted flow conditions, on the Stokes force; K(0)=1. For simplification, we neglect
also the effect of viscous stresses in the liquid phase on the development of pseudo~turbulent pulsations;
as is clear from [1, 2], this does not lead to any substantial change in the results obtained.

With the above assumptions, we can write the following relationships for the spectral measures of
the pseudo-turbulent pulsations of the pressure p', the velocities of the liquid v', and the particles w',
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and the concentration p?, which figure in the representations of the above
pulsations in the form of Fourier—Stieltjes integrals [2]
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\\ where w and k are the frequency and the wave vector. Relationships (1.2)
\ 9 permit expressing the different spectral densities characterizing psuedo-
turbulent motion in terms of the spectral density ¥, , of a random process,
/ \& p', and then, using the determined representation for ¥, s, finding the cor-
relation functions by the standard method (the expanded expressions for the

/ﬂ; 7 7 77 spectral densities are given in [2]).

Fig. 3 As ¥ ,p» We here use the function [3]

KDk 0, tr D
TP,P ((0, k) == o (kBl‘(’—— Tow?) * TU = -W (1'3)
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where D is the tensor of the coefficients of the psuedo-turbulent diffusion of the particles; py is the con-
centration of the particles in the densely packed state; Y (x) is a Heaviside function.

To determine K(p) we use the results of experiments on determination of the hydraulic resistance
of a bed of motionless particles. We here assume that, in such experiments, there is usually determined
the quantity Ke (p), entering into the equation

— VP + dog — dofpK, (p)u; = 0 {1.4)
Comparing (1.4) with the first equation of (1.1), we have

K(p) = (1 — p)*K., (p) (1.5)
For determinacy we use the empirical formula of Ergun [4]
Ko (o) ="/ (1 — p)~® (1.6)

which holds with p >0.2-0.3. To extend the expression for K(p), following from (1.5), (1.6), to the region
p <0.2-0.3, we further approximate this expression by the function

2.96 .
K (p) = o —1.96 (1.7

The function (1.7) approximates the above expression sufficiently well at p >0.2-0.3 and, at p=0, re-
verts to unity. We use it also in calculations of the mean pseudo-turbulent values below; for py we use the
value px=0.6
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2. The "equilibrium® pseudo-turbulence under consideration is obviously axisymmetric; the axis of
symmetry is directed along the vector u. Selecting the coordinate axis x4 along u, and using the method of
[1], for the coefficients of the pseudo-turbulent diffusion of the particles, we obtain the equations

A o [BVelr e YR ram (2.1)
D= =71 <T> <.1 o ) (/o — Jayhau
1
2 "t
Dz=D3=ND01=1_’_r’|:?DD J"=S_t2——+1’z
(1}
here vy is the sole root of the equation
2"{2 . Jo—Jy _ dinK
1_;__.],2 = l2J0+21J2+J¢ 1 = (1 _p) a’p (22)

The dependences of the quantities D’1"=D1/au and Np on p, calculated in accordance with (2.1) and
(2.2), are shown in Fig. 1 and Fig. 2, respectively (curves 1). The value of D’f is found to be less, and the
value of Ny greater than the values calculated in [1].

For the mean squares of the components of the pulsation velocity of the particles, on the basis of
(1.2), and (1.3) we use the usual method to obtain the expressions

, 2 1 1+ %N 2
(w12)=cp[l2 + 31 +_5"(1+1_+—2‘3175_ <u;2> )]uz

' 12 ’ 1+4N ’
@ity = g™y = Ny o = - (14 g w2 (2.3)

, 2 1 -1 2
wr=slrr - o=zl
The dependences of (wi'z)* =y~2 {w,'"?) and Ny, on p, obtained from (2.3) at Np~ 0, are also shown in
Fig. 1 and Fig. 2 (curves 2). These values are very close to those calculated in [2] over almost the whole
region 0 <p < 0.6, but they do not revert to infinity in the neighborhood of p =0.6. The distribution functions
of the quantities (W!z) in the "equilibrium" state under consideration are Gaussian functions with variances
following from (2.3) J

Finally, we give expressions for the other pseudo-turbulent characteristics which are of interest.
We have
, [v) 1 + 2/3N ¢ I2>
<”12>=T(1+mwf“";z— u?
, , , 14N 12
o = 0% = Wy = (1 g 2
., 3 1--2sN Cw'?
<w1”l>=%[1+—5“(1+—11ﬁf—2>)]u2 (2.4)
. . 14N 2
(wy'vy' ) = {wy'vs' > =%(1+T—|—2—N§— <Z:z >)u2
o> =0 (1 —p)udy;, <o'wi’> = (1 —p) (I + s udy

The mean values of the products of the components v! and w' along the different axes are equal to
zero, in view of the axial symmetry of the pseudo-turbulent motion.

The dependences of the quantities in (2.4) on p have the same character as the dependences (wi%),
but their maximal values are considerably less. In the approximation Np~ 0, the ratio NV=1/3, i.e., the
anisotropy of the pulsations of the liquid is much more weakly expressed than the anisotropy of the pulsa-
tions of the particles.

Let us evaluate the degree of agreement of the relationships obtained with known experimental re-
sults. A large amount of data on the pulsations of a liquid and, in particular, of particles, has been ob~
tained in experiments with fluidized beds. However, unfortunately, the data known to the present author,
with respect to local pulsations of very small particles, for which R<1, are very limited and incomplete,
and do not inspire any special amount of confidence; this is obviously due to the great experimental diffi-
culties. The minimal sizes of particles whose longitudinal pulsations have been investigated more or less
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reliably (although still with a large statistical scatter) correspond to values of R ~ 100 and higher; in view
of this, relationships obtained at R< 1 cannot, of course, be considered reliable. If we calculate the value
of {w;') using such relationships, we obtain values which are 1.5-2 times higher than those determined
experimentally. Such a comparison has been made, for example, with the data of A. K. Bondareva, given
in [5], on the air fluidization of particles of sand with mean diameters of 100, 153, and 233 1. From 2
qualitative point of view, the high values of (wi'z), calculated in accordance with (2.3}, are in the present
case completely explainable. Actually, in accordance with (2.3), the value of (w1'2) is proportional, roughly
speaking, to 12, where | is determined in (2.2). However, the latter quantity drops rather rapidly with a
rise in R; this is explained by the substantial weakening of the dependence of K on p with an increase of R
[5, 6]. The general character of the dependence of the mean values of the quantities in (2.3), (2.4) on the
concentration p is completely confirmed experimentally. To ensure a qualitative verification of the the-
ory developed with experimental data, we consider below the effect of a lowering of the hydraulic resis-
tance of a fluidized bed, compared to the resistance of a fixed granular bed of the same particles, and of
the same porosity (a detailed discussion of the origin of this effect is given in [2]). The number of inves-
tigations devoted to determination of the effective resistance of a fluidized bed at small values of R isvery
large, and, in contrast to the results of experiments on determination of the pulsations, their results are
in rather good agreement with one another (see, for example, the review in [5]).

In accordance with [2] we have (the asterisk denotes the value of K for a fluidized bed)
K* (p) = (M/M) K (0),  K.*(p) = (M/Mo) Ko (p) (2.5)

K* is connected with Ke* in the same way as K with Ke (i.e., using the formula (1.5)). The values of Al and
Ay are expressed in terms of K, using the relationships

_ (1—p)? &K P .
—1—(‘)?2— K dpz]’ Ku:-iﬁT .6

The results of a calculation of the value of K*, carried out in accordance with formulas (2.5) and
(2.6) in the region 0.2 <p <0.6, are given in Fig. 3 (curve 1). The value of K used corresponded to expres-
sion (1.6) for Ke; this value of K is shown by the dotted line in Fig. 3. For purposes of comparison, use
was made of the empirical dependences of Richardson and Zaki [6, 7] and of Goroshko, Rozenbaum, and
Todes [5], describing the hydraulic resistance of a fluidized bed at small values of R, and obtained by anal-
ysis of a large number of experimental data. Both of these dependences have the form

K*=({1—p™ 2.7

here n=4.65 in the first case, and n=4.75 in the second. Figure 3 gives Curve 2 for K*, calculated from
(2.7) in accordance with (1.5) at n=4.7. We note that dependences of the type of (2.7) have been proposed
also in several other articles, in particular in [8], where a value of n=4.65 was also obtained. Asis evi-
dent from Fig. 3, the agreement between the dependences 1 and 2 for K* is completely satisfactory, which
permits speaking not only of the qualitative, but also, to a certain degree, of the quantitative adequacy of
the theory developed.
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